3.21 \(\int \frac {A+B x+C x^2+D x^3}{(c+d x)^{5/2}} \, dx\)

Optimal. Leaf size=113 \[ -\frac {2 \left (A d^3-B c d^2+c^3 (-D)+c^2 C d\right )}{3 d^4 (c+d x)^{3/2}}+\frac {2 \left (-B d^2-3 c^2 D+2 c C d\right )}{d^4 \sqrt {c+d x}}+\frac {2 \sqrt {c+d x} (C d-3 c D)}{d^4}+\frac {2 D (c+d x)^{3/2}}{3 d^4} \]

[Out]

-2/3*(A*d^3-B*c*d^2+C*c^2*d-D*c^3)/d^4/(d*x+c)^(3/2)+2/3*D*(d*x+c)^(3/2)/d^4+2*(-B*d^2+2*C*c*d-3*D*c^2)/d^4/(d
*x+c)^(1/2)+2*(C*d-3*D*c)*(d*x+c)^(1/2)/d^4

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {1850} \[ -\frac {2 \left (A d^3-B c d^2+c^2 C d+c^3 (-D)\right )}{3 d^4 (c+d x)^{3/2}}+\frac {2 \left (-B d^2-3 c^2 D+2 c C d\right )}{d^4 \sqrt {c+d x}}+\frac {2 \sqrt {c+d x} (C d-3 c D)}{d^4}+\frac {2 D (c+d x)^{3/2}}{3 d^4} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x + C*x^2 + D*x^3)/(c + d*x)^(5/2),x]

[Out]

(-2*(c^2*C*d - B*c*d^2 + A*d^3 - c^3*D))/(3*d^4*(c + d*x)^(3/2)) + (2*(2*c*C*d - B*d^2 - 3*c^2*D))/(d^4*Sqrt[c
 + d*x]) + (2*(C*d - 3*c*D)*Sqrt[c + d*x])/d^4 + (2*D*(c + d*x)^(3/2))/(3*d^4)

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rubi steps

\begin {align*} \int \frac {A+B x+C x^2+D x^3}{(c+d x)^{5/2}} \, dx &=\int \left (\frac {c^2 C d-B c d^2+A d^3-c^3 D}{d^3 (c+d x)^{5/2}}+\frac {-2 c C d+B d^2+3 c^2 D}{d^3 (c+d x)^{3/2}}+\frac {C d-3 c D}{d^3 \sqrt {c+d x}}+\frac {D \sqrt {c+d x}}{d^3}\right ) \, dx\\ &=-\frac {2 \left (c^2 C d-B c d^2+A d^3-c^3 D\right )}{3 d^4 (c+d x)^{3/2}}+\frac {2 \left (2 c C d-B d^2-3 c^2 D\right )}{d^4 \sqrt {c+d x}}+\frac {2 (C d-3 c D) \sqrt {c+d x}}{d^4}+\frac {2 D (c+d x)^{3/2}}{3 d^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 75, normalized size = 0.66 \[ -\frac {2 \left (d^3 \left (A+3 B x-\left (x^2 (3 C+D x)\right )\right )+2 c d^2 (B+3 x (D x-2 C))+16 c^3 D-8 c^2 d (C-3 D x)\right )}{3 d^4 (c+d x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x + C*x^2 + D*x^3)/(c + d*x)^(5/2),x]

[Out]

(-2*(16*c^3*D - 8*c^2*d*(C - 3*D*x) + 2*c*d^2*(B + 3*x*(-2*C + D*x)) + d^3*(A + 3*B*x - x^2*(3*C + D*x))))/(3*
d^4*(c + d*x)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 110, normalized size = 0.97 \[ \frac {2 \, {\left (D d^{3} x^{3} - 16 \, D c^{3} + 8 \, C c^{2} d - 2 \, B c d^{2} - A d^{3} - 3 \, {\left (2 \, D c d^{2} - C d^{3}\right )} x^{2} - 3 \, {\left (8 \, D c^{2} d - 4 \, C c d^{2} + B d^{3}\right )} x\right )} \sqrt {d x + c}}{3 \, {\left (d^{6} x^{2} + 2 \, c d^{5} x + c^{2} d^{4}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((D*x^3+C*x^2+B*x+A)/(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/3*(D*d^3*x^3 - 16*D*c^3 + 8*C*c^2*d - 2*B*c*d^2 - A*d^3 - 3*(2*D*c*d^2 - C*d^3)*x^2 - 3*(8*D*c^2*d - 4*C*c*d
^2 + B*d^3)*x)*sqrt(d*x + c)/(d^6*x^2 + 2*c*d^5*x + c^2*d^4)

________________________________________________________________________________________

giac [A]  time = 1.23, size = 115, normalized size = 1.02 \[ -\frac {2 \, {\left (9 \, {\left (d x + c\right )} D c^{2} - D c^{3} - 6 \, {\left (d x + c\right )} C c d + C c^{2} d + 3 \, {\left (d x + c\right )} B d^{2} - B c d^{2} + A d^{3}\right )}}{3 \, {\left (d x + c\right )}^{\frac {3}{2}} d^{4}} + \frac {2 \, {\left ({\left (d x + c\right )}^{\frac {3}{2}} D d^{8} - 9 \, \sqrt {d x + c} D c d^{8} + 3 \, \sqrt {d x + c} C d^{9}\right )}}{3 \, d^{12}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((D*x^3+C*x^2+B*x+A)/(d*x+c)^(5/2),x, algorithm="giac")

[Out]

-2/3*(9*(d*x + c)*D*c^2 - D*c^3 - 6*(d*x + c)*C*c*d + C*c^2*d + 3*(d*x + c)*B*d^2 - B*c*d^2 + A*d^3)/((d*x + c
)^(3/2)*d^4) + 2/3*((d*x + c)^(3/2)*D*d^8 - 9*sqrt(d*x + c)*D*c*d^8 + 3*sqrt(d*x + c)*C*d^9)/d^12

________________________________________________________________________________________

maple [A]  time = 0.00, size = 90, normalized size = 0.80 \[ -\frac {2 \left (-D x^{3} d^{3}-3 C \,d^{3} x^{2}+6 D c \,d^{2} x^{2}+3 B \,d^{3} x -12 C c \,d^{2} x +24 D c^{2} d x +A \,d^{3}+2 B c \,d^{2}-8 C \,c^{2} d +16 D c^{3}\right )}{3 \left (d x +c \right )^{\frac {3}{2}} d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((D*x^3+C*x^2+B*x+A)/(d*x+c)^(5/2),x)

[Out]

-2/3/(d*x+c)^(3/2)*(-D*d^3*x^3-3*C*d^3*x^2+6*D*c*d^2*x^2+3*B*d^3*x-12*C*c*d^2*x+24*D*c^2*d*x+A*d^3+2*B*c*d^2-8
*C*c^2*d+16*D*c^3)/d^4

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 98, normalized size = 0.87 \[ \frac {2 \, {\left (\frac {{\left (d x + c\right )}^{\frac {3}{2}} D - 3 \, {\left (3 \, D c - C d\right )} \sqrt {d x + c}}{d^{3}} + \frac {D c^{3} - C c^{2} d + B c d^{2} - A d^{3} - 3 \, {\left (3 \, D c^{2} - 2 \, C c d + B d^{2}\right )} {\left (d x + c\right )}}{{\left (d x + c\right )}^{\frac {3}{2}} d^{3}}\right )}}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((D*x^3+C*x^2+B*x+A)/(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

2/3*(((d*x + c)^(3/2)*D - 3*(3*D*c - C*d)*sqrt(d*x + c))/d^3 + (D*c^3 - C*c^2*d + B*c*d^2 - A*d^3 - 3*(3*D*c^2
 - 2*C*c*d + B*d^2)*(d*x + c))/((d*x + c)^(3/2)*d^3))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+B\,x+C\,x^2+x^3\,D}{{\left (c+d\,x\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x + C*x^2 + x^3*D)/(c + d*x)^(5/2),x)

[Out]

int((A + B*x + C*x^2 + x^3*D)/(c + d*x)^(5/2), x)

________________________________________________________________________________________

sympy [A]  time = 1.42, size = 425, normalized size = 3.76 \[ \begin {cases} - \frac {2 A d^{3}}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} - \frac {4 B c d^{2}}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} - \frac {6 B d^{3} x}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} + \frac {16 C c^{2} d}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} + \frac {24 C c d^{2} x}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} + \frac {6 C d^{3} x^{2}}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} - \frac {32 D c^{3}}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} - \frac {48 D c^{2} d x}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} - \frac {12 D c d^{2} x^{2}}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} + \frac {2 D d^{3} x^{3}}{3 c d^{4} \sqrt {c + d x} + 3 d^{5} x \sqrt {c + d x}} & \text {for}\: d \neq 0 \\\frac {A x + \frac {B x^{2}}{2} + \frac {C x^{3}}{3} + \frac {D x^{4}}{4}}{c^{\frac {5}{2}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((D*x**3+C*x**2+B*x+A)/(d*x+c)**(5/2),x)

[Out]

Piecewise((-2*A*d**3/(3*c*d**4*sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)) - 4*B*c*d**2/(3*c*d**4*sqrt(c + d*x) +
3*d**5*x*sqrt(c + d*x)) - 6*B*d**3*x/(3*c*d**4*sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)) + 16*C*c**2*d/(3*c*d**4
*sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)) + 24*C*c*d**2*x/(3*c*d**4*sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)) + 6
*C*d**3*x**2/(3*c*d**4*sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)) - 32*D*c**3/(3*c*d**4*sqrt(c + d*x) + 3*d**5*x*
sqrt(c + d*x)) - 48*D*c**2*d*x/(3*c*d**4*sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)) - 12*D*c*d**2*x**2/(3*c*d**4*
sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)) + 2*D*d**3*x**3/(3*c*d**4*sqrt(c + d*x) + 3*d**5*x*sqrt(c + d*x)), Ne(
d, 0)), ((A*x + B*x**2/2 + C*x**3/3 + D*x**4/4)/c**(5/2), True))

________________________________________________________________________________________